05_convolutional_net 04 Oct 2016 In [1]: import sys sys.path.append('../') In [2]: #!/usr/bin/env python import tensorflow as tf import numpy as np import input_data batch_size = 128 test_size = 256 def init_weights(shape): return tf.Variable(tf.random_normal(shape, stddev=0.01)) def model(X, w, w2, w3, w4, w_o, p_keep_conv, p_keep_hidden): # l1a shape=(?, 28, 28, 32) l1a = tf.nn.relu(tf.nn.conv2d(X, w, strides=[1, 1, 1, 1], padding='SAME')) # l1 shape=(?, 14, 14, 32) l1 = tf.nn.max_pool(l1a, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') l1 = tf.nn.dropout(l1, p_keep_conv) # l2a shape=(?, 14, 14, 64) l2a = tf.nn.relu(tf.nn.conv2d(l1, w2, strides=[1, 1, 1, 1], padding='SAME')) # l2 shape=(?, 7, 7, 64) l2 = tf.nn.max_pool(l2a, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') l2 = tf.nn.dropout(l2, p_keep_conv) # l3a shape=(?, 7, 7, 128) l3a = tf.nn.relu(tf.nn.conv2d(l2, w3, strides=[1, 1, 1, 1], padding='SAME')) # l3 shape=(?, 4, 4, 128) l3 = tf.nn.max_pool(l3a, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # reshape to (?, 2048) l3 = tf.reshape(l3, [-1, w4.get_shape().as_list()[0]]) l3 = tf.nn.dropout(l3, p_keep_conv) l4 = tf.nn.relu(tf.matmul(l3, w4)) l4 = tf.nn.dropout(l4, p_keep_hidden) pyx = tf.matmul(l4, w_o) return pyx mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels trX = trX.reshape(-1, 28, 28, 1) # 28x28x1 input img teX = teX.reshape(-1, 28, 28, 1) # 28x28x1 input img X = tf.placeholder("float", [None, 28, 28, 1]) Y = tf.placeholder("float", [None, 10]) w = init_weights([3, 3, 1, 32]) # 3x3x1 conv, 32 outputs w2 = init_weights([3, 3, 32, 64]) # 3x3x32 conv, 64 outputs w3 = init_weights([3, 3, 64, 128]) # 3x3x32 conv, 128 outputs w4 = init_weights([128 * 4 * 4, 625]) # FC 128 * 4 * 4 inputs, 625 outputs w_o = init_weights([625, 10]) # FC 625 inputs, 10 outputs (labels) p_keep_conv = tf.placeholder("float") p_keep_hidden = tf.placeholder("float") py_x = model(X, w, w2, w3, w4, w_o, p_keep_conv, p_keep_hidden) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(py_x, Y)) train_op = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(cost) predict_op = tf.argmax(py_x, 1) # Launch the graph in a session with tf.Session() as sess: # you need to initialize all variables tf.initialize_all_variables().run() for i in range(10): training_batch = zip(range(0, len(trX), batch_size), range(batch_size, len(trX)+1, batch_size)) for start, end in training_batch: sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end], p_keep_conv: 0.8, p_keep_hidden: 0.5}) test_indices = np.arange(len(teX)) # Get A Test Batch np.random.shuffle(test_indices) test_indices = test_indices[0:test_size] print(i, np.mean(np.argmax(teY[test_indices], axis=1) == sess.run(predict_op, feed_dict={X: teX[test_indices], Y: teY[test_indices], p_keep_conv: 1.0, p_keep_hidden: 1.0}))) ('Extracting', 'MNIST_data/train-images-idx3-ubyte.gz') ('Extracting', 'MNIST_data/train-labels-idx1-ubyte.gz') ('Extracting', 'MNIST_data/t10k-images-idx3-ubyte.gz') ('Extracting', 'MNIST_data/t10k-labels-idx1-ubyte.gz') (0, 0.96484375) (1, 1.0) (2, 0.98828125) (3, 0.98828125) (4, 0.98828125) (5, 0.9921875) (6, 1.0) (7, 0.98828125) (8, 0.99609375) (9, 1.0) In [ ]: