09_tensorboard 04 Oct 2016 In [ ]: import sys In [ ]: #!/usr/bin/env python import tensorflow as tf import input_data def init_weights(shape, name): return tf.Variable(tf.random_normal(shape, stddev=0.01), name=name) # This network is the same as the previous one except with an extra hidden layer + dropout def model(X, w_h, w_h2, w_o, p_keep_input, p_keep_hidden): # Add layer name scopes for better graph visualization with tf.name_scope("layer1"): X = tf.nn.dropout(X, p_keep_input) h = tf.nn.relu(tf.matmul(X, w_h)) with tf.name_scope("layer2"): h = tf.nn.dropout(h, p_keep_hidden) h2 = tf.nn.relu(tf.matmul(h, w_h2)) with tf.name_scope("layer3"): h2 = tf.nn.dropout(h2, p_keep_hidden) return tf.matmul(h2, w_o) mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels X = tf.placeholder("float", [None, 784], name="X") Y = tf.placeholder("float", [None, 10], name="Y") w_h = init_weights([784, 625], "w_h") w_h2 = init_weights([625, 625], "w_h2") w_o = init_weights([625, 10], "w_o") # Add histogram summaries for weights tf.histogram_summary("w_h_summ", w_h) tf.histogram_summary("w_h2_summ", w_h2) tf.histogram_summary("w_o_summ", w_o) p_keep_input = tf.placeholder("float", name="p_keep_input") p_keep_hidden = tf.placeholder("float", name="p_keep_hidden") py_x = model(X, w_h, w_h2, w_o, p_keep_input, p_keep_hidden) with tf.name_scope("cost"): cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(py_x, Y)) train_op = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(cost) # Add scalar summary for cost tf.scalar_summary("cost", cost) with tf.name_scope("accuracy"): correct_pred = tf.equal(tf.argmax(Y, 1), tf.argmax(py_x, 1)) # Count correct predictions acc_op = tf.reduce_mean(tf.cast(correct_pred, "float")) # Cast boolean to float to average # Add scalar summary for accuracy tf.scalar_summary("accuracy", acc_op) with tf.Session() as sess: # create a log writer. run 'tensorboard --logdir=./logs/nn_logs' writer = tf.train.SummaryWriter("./logs/nn_logs", sess.graph) # for 0.8 merged = tf.merge_all_summaries() # you need to initialize all variables tf.initialize_all_variables().run() for i in range(100): for start, end in zip(range(0, len(trX), 128), range(128, len(trX)+1, 128)): sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end], p_keep_input: 0.8, p_keep_hidden: 0.5}) summary, acc = sess.run([merged, acc_op], feed_dict={X: teX, Y: teY, p_keep_input: 1.0, p_keep_hidden: 1.0}) writer.add_summary(summary, i) # Write summary print(i, acc) # Report the accuracy